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Abstract— Body sensor networks (BSNs) have been 

increasingly used in medical applications such as exoskeleton 
control, powered prosthesis control, tremor suppression, gesture 
and sign language recognition systems, and human computer 
interfaces. This review explores the use of multi-modal sensor 
fusion in BSNs for the detection, measurement and classification 
of upper limb for the control of dynamic systems. Specifically, the 
review will look into the most common multi-modal sensor 
combinations found in literature, namely inertial measurement 
units (IMUs) with electromyography (EMG), IMUs with camera 
systems, EMG with electroencephalography (EEG), and IMUs 
with flexible force sensors. The advantages and challenges 
associated with these sensor combinations is discussed, as well as 
the challenges of sensor fusion in a broad nature, with particular 
focus on the use of data, feature, or decision level fusion. 
 

Keywords—Body Sensor Networks (BSNs); sensor fusion; 
multimodal; upper limb; motion analysis. 

I.  Introduction 
Body sensor networks (BSNs), also referred to as body area 

network (BAN), or more specifically as wireless body area 
network (WBAN), are wireless networks of computing devices 
placed on the human body [1]. Over the last decade, there has 
been an increased growth in the area of BSNs in both the 
demand and number of applications. However, the current 
design and implementation of BSNs face challenges that are 
limiting further developments. BSNs generally produce large 
amount of data for accurate and reliable results, but this data 
needs to be processed with limited computational load, storage, 
and power consumption.  Sensor fusion techniques can 
effectively exploit data from multiple sensors, identifying 
useful information from redundant data but reducing the load 
and energy consumption at the same time. [2, 3] 

This review is part of the research project on designing a 
Body Sensor Network to effectively detect the movement of 
upper limbs for the control of dynamic systems, such as 
assistive exoskeletons or powered prosthesis for the upper 
limb. BSNs of the upper limb will be referred to as “upper limb 
area networks” for the remainder of this review. The purpose 
of this literature review is to identify the trends of current 
studies on sensor fusion systems and gain an in-depth 
understanding of the methods and techniques used. While other 
studies have made survey and summarization of current trends 
in Body Area and Sensor Networks in a broad nature [1-5], this 
review will specifically explore the types of combinations of 
sensors that are used for the detection of upper limb movement, 
specifically the configuration and processing techniques 
associated with them, and the problems and challenges. 

 The upper limb, which is composed of the shoulder, arm, 
hand, and fingers, is an extremely versatile and functional 
element of the human body. Compared to the lower limb, the 
upper limb is less firmly linked to the rest of the body, giving it 
more mobility and maneuverability [4]. The diversity of 
movements the upper limb is capable of gives it extreme 
potential for application. As such many extensive studies have 
been  done to effectively measure and process upper limb 
movement data to either recognize, track, or classify the 
movements in a diverse range of applications, such as powered 
prosthesis control [5, 6], assistive exoskeletons [7-13], HCI 
control [14, 15], Gesture Control [15-17] and many others. 

When Upper Limb Area Networks were initially being 
developed, each sensor network would often only have one 
type of sensor at its disposal. This is particularly evident in 
early movement recognition and tracking systems, for which 
the main sensors being utilized were electromyography (EMG) 
sensors, inertial measurement units (IMU), 
electroencephalogram (EEG) sensors, and optical sensors. 
Although some more modern systems still rely on a single 
sensor module, it is now increasingly common for systems to 
include a fusion of sensors with multiple modules.  

Data from a single sensor has a limited dimensionality 
since it can only measure limited aspects of the movement. 
With multiple sensors, each measuring different modalities, it 
makes it possible to reconstruct the movement with higher 
dimensionality. Multimodal systems can also provide higher 
accuracy by exploiting two different sensors that measure the 
same phenomena but in different ways. Since each sensor may 
have spatial, temporal coverage limitations and degradation of 
accuracy in certain situations, having overlapping data between 
sensor nodes can make the system less vulnerable to the 
limitations of a single node [18]. 

The remainder of the paper is organized as follows. Section 
2 discusses the literature search strategy that was undertaken in 
this paper. In Section 3 a review of sensor fusion is given and 
includes an overview of the most common multi-modal sensor 
combinations utilized in the field of upper limb movement 
measurement. Section 4 presents a comparison of the many 
different fusion techniques utilized, and provides commentary 
on which combinations of sensors are best suited to which 
technique. Section 5 provides discussion on the challenges that 
are experienced with sensor fusion. Finally, Section 6 
concludes the paper and provides insight into the areas of 
future development.  
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II. Method of Investigation  
Regarding the subject of this review: “Gesture recognition”, 

“Fusion” and “Sensor” were used and combined as high-level 
keywords. Additionally, “Gesture recognition” was also 
combined with the following key words: sign language; hang 
gestures; upper-limb and upper-extremity. Where “Fusion” was 
combined to the following keywords: multi; hybrid; multi-
modal and multimodal. These keywords were chosen after 
initial search was done to ensure there were no areas within this 
field that were excluded due to inadequate keywords that did 
not fully represent the relevant literature. This process was 
based on a number of current textbooks and literature reviews 
that were acquired and analyzed. [2, 3, 16, 19-21] 

Six search directories were utilized in this search strategy 
and were chosen for their content and relevance to this field of 
study. They were Ei Compendex, Inspec - IET, Web of 
Science, PubMed, Proquest, and Science-Direct. Abstract and 
full texts were then collaboratively assessed and peer reviewed 
by the authors for direct relevance to the topic and scope of this 
study. A total of 96 relevant papers were discovered from 
papers restricted to the last 10 years. The results were then 
classified into groups, as seen in the figure below. The broad 
terms ‘Inertial’ and ‘Camera’ were used for the purpose of 
simplification and include gyroscope, accelerometer, and 
magnetometer sensor for ‘Inertial’ and RGB Cameras, Infrared 
Cameras, and Depth Sensors for ‘Camera’.  

As seen in Fig. 1, EMG and inertial, inertial and camera, 
EEG and EMG, and inertial and flex sensor are the most 
prevalent combinations exploited. Regarding the result of this 
literature search, these 4 combinations are the main topics 
covered in this paper. Multi-modal sensor fusion is definitely a 
growing trend in upper limb area networks, considering 34.7% 
of the papers collected were from the last two years (2015 to 
2017), Figure 3 highlights this, showing the number of papers 
found for the period of January 2007 to February 2017, which 
are relevant to the combinations of Inertial sensors with EMG 
sensors and Inertial sensors with Camera Systems, which are 
the two most common combinations for upper limb movement 
measurement. 

III. Review on Sensor Fusion 
Upper limb movement analysis can be divided into 

movement tracking or movement classification as illustrated in 
Fig. 2. Movement tracking is the kinematic modeling of the 
upper arm and is mostly developed with Graphic User 
Interfaces to visualize the model, which can be used for 
applications such as rehabilitation, virtual reality, sports 
analysis, etc. Movement classification, on the other hand, has 
been used for applications such as gesture recognition, 
movement intent recognition, and even sign language 
recognition. It involves the extraction of different types of 
features from the acquired sensor data that can be then treated 
by machine learning techniques. Depending on the 
characteristics of the sensors, each combination can be 
applicable for either tracking, classification or both.  

A. Inertial and EMG Sensors Combination 
Combining Inertial and EMG sensors is a good example of 

a cooperative sensor grouping [18]. Since these sensors 

measure different aspects of the same phenomenon, their 
combination has the advantage of providing a more in-depth 
view of the phenomenon being measured. An IMU measures 
acceleration, gravity, and angular velocity, which makes it 
possible to capture the kinetic features of a movement. The 
internal biological features of a movement, that being the 
electrical potentials present in the muscle fiber as part of the 
signaling process, can be measured by EMG. By using these 
sensors together, one is able to recognize a broader range of 
gestures and upper limb motions, and as such this combination 
has been used for applications such as sign language 
recognition, powered prosthesis control, HCI, and gaming. 
Sign language recognition in particular, includes subtle
movements that either sensor is capable of consistently 
recognizing individually. This is validated by a study presented 
in [17], which stated that IMU sensor is particularly good for 
capturing larger hand and arm movements, while EMG data 
was better at distinguishing different hand shapes and finger 
movements. Many studies have been done on the significance 
that each sensor has on the system’s recognition accuracy, and 

at 

Fig. 3. Taxonomy of upper limb motion analysis 

Fig. 1. Multimodal Sensor Fusion Types in Literature 2007-2017 

Fig. 2. Papers retrieved in the period January 2007 – February 2017 for the 
two most common combinations 
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which point fusion become substantially viable. For example, it 
was found by Fougner et al [22], that for gesture recognition, to 
improve a two site EMG system, it is more beneficial to add an 
IMU than to add an extra EMG. 

B. Inertial and Visual Sensors Combination 
IMUs and vision sensors are both used for obtaining 3D 

orientation data making this combination to be the most 
adequate for movement tracking. Visual systems are known to 
produce accurate positional information [23], but due to motion 
blur and occlusion [24], performance is often lacking for fast 
and large movements. IMU can produce smooth motion data, 
however, drift problems and error accumulation degrade the 
accuracy. Therefore, even though inertial and visual sensors 
measure the same aspect of movements, since it has strengths 
and weaknesses in different situations, the fusion system will 
produce better accuracy in a complementary aspect [25]. The 
main drawbacks associated with current state-of-the-art optical 
systems is the cost and the portability. An alternative product 
that is a portable and inexpensive yet also accurate has been 
long awaited. The Microsoft Kinect, which consists of an RGB 
camera and a depth sensor, and the Leap Motion Controller, 
which is a combination of two infra-red cameras, are some of 
the commercially available products that meet this need. With 
the development of these cost-effective and simple visual 
systems, many studies exploiting them for body sensor 
networks were produced [24-29]. 

C. Inertial and Flex Sensors Combination 
Flex sensors, which are passive analog resistive devices 

that convert the change in bend to an electrical resistance 
variation, is getting higher demands on its application of 
measuring physiological bending angles [30, 31]. However, 
since the output data is one-dimensional [31], a system using 
only flex sensors is not sufficient enough to recognize 
multiple different movements such as rotation or acceleration. 
IMUs on the other hand, are designed to measure the rotation 
and acceleration, which led to the fusion of the two systems 
to be applicable for movement classification. 

In the field of hand gesture recognition, this combination is 
especially useful in providing lightweight yet accurate 
wearable sensors systems. Commercially available flex sensors 
are 0.5cm in width and 5~10 cm in length, which is small 
enough to be placed on each finger to detect the angle of finger 
bending. IMUs are also compact in size with the development 
of MEMS technology and can be placed on the back of the 
hand to detect the direction and magnitude of acceleration. 
Glove based sensor systems have therefore been seen to be a 
common application of this sensor combination [30, 32, 33], 
While it is possible to measure the angle with using two 
separate IMUs alone, as stated above, IMUs suffer from drift 
problems and are more sensitive to subtle vibrations, such as 
tremor, which does not affect flex sensors as much [34], thus 
giving this combination a particular advantage.  

D. EEG and EMG Sensors Combination 
Both EMG and EEG sensors measure what is known as a 

neurophysical phenomenon. That is to say, they seek to 
measure not the movement itself but the signaling process of 
the movement, in the muscle fiber and the motor cortex 

respectively. Although using EEG and EMG is much more 
complex in terms of measurement, considering their relatively 
high noise to signal ratios compared to sensors like 
accelerometers, it does however, offer a unique opportunity for 
some applications.  Considering neither sensor measures 
inertial movement directly, they can therefore measure the 
intention of movement before the movement occurs. The 
potential of this sensors combination therefore lies heavily in 
the realm of assistive technologies for amputees, stroke 
patients, and patients affected by neuromuscular disorders, 
since in these cases a lack of limb or other physical impairment 
means that they may be unable to move their arm This is 
particularly highlighted in a survey and review of EEG-EMG 
based control approaches presented in [35], which confirms 
that the combination of EEG and EMG data can be particularly 
useful for applications which involve the measurement of 
muscle intention for amputees or people with movement 
impairments. 

Appropriately, the majority of applications of this sensors 
combination are, at the moment, focused around the control of 
prosthesis for amputees [6, 36], human control interfaces 
designed to be controlled by amputees or patients with a 
movement impairment [37, 38], the control of robotic 
exoskeletons[12, 39], or tremor suppression systems with the 
assistance of functional electrical stimulation [40-42]. 

IV. Sensor Fusion Technique Comparison 

A. 3D Movement Tracking Sensors 
Sensor fusion in movement tracking, is mainly the process 

of fusing the raw data achieved from different sensors for 
kinematic modeling. Therefore, this is possible with sensors 
that provide positional data such as IMUs, cameras and flex 
sensors. Out of the four main combinations studied in this 
paper, 3D tracking is possible with inertial and camera, or 
inertial and flex sensor.  The fusion of the data will be done on 
the raw data, which is referred as data-level fusion, through 
mathematical and physical computation. Computation is done 
for each of the samples preventing information loss, which also 
means higher computational complexity and longer processing 
time [28]. Especially for multi-modal systems, each sensor has 
a different sampling rate and processes a different type of data, 
which means additional to the fusion algorithm, 
synchronization and data processing are also required.  

B. Movement Classification 
Movement classification is a multi-stage process as shown 

in Fig. 2, which is detailed as follows; Filtered data acquired 
after the pre-processing step of the raw data is divided into time 
segments in the data processing step. For each segment, time 
and/or frequency domain features are extracted which are used 
as input to classification algorithms. Compared to movement 
tracking, fusion can be done in different stages of the process. 
Data-level fusion comes after data processing step, feature-
level fusion after feature extraction, and decision-level fusion is 
done after the classification. 

Table I compares the type of fusion and the classification 
techniques used by a number of studies selected from the 
literature search. Classification accuracy was a criterion used as 
a basis of comparison, solely because this one has been used by 
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a majority of papers. However, this has a number of 
limitations, as each paper seeks to classify features to a 
different number of gestures, and are also applied on a varied 
participant size. The values are therefore not directly 
comparable but give some indication into the success of certain 
methods. It was suggested by Novak et al. that studies should 
strive to test sensor fusion methods online using practical 
performance metrics rather than simply classification accuracy 
[21]. 

It is clear from Table 1 that the combinations explored are 
all able to achieve a high level of accuracy, although the IMU 
and EMG combination does stand out as one that is particularly 
successful. This may be due in part to the fact that this 
combination has the most research done on it, but also since the 
combination is quite optimal in that the sensors are well suited 
for gesture detection. 

1) Data-level Fusion 
Since data level fusion needs to handle the sampled raw 

data itself, high sampling rate sensors such as EMG and EEG 
are difficult to fuse at this stage. In the papers reported in this 
study, data level fusion was not used in the EMG and IMU 
combination nor for the EEG and EMG combination. For the 
inertial and visual sensors combination, the synchronized raw 
data were simply concatenated into a single vector and then 
classification techniques such as Hidden Markov Model 
(HMM) or Dynamic Time Warping (DTW) were used [23] 
[27]. In [27], comparison between HMM and DTW was carried 
out and concluded that HMM showed better classification 
accuracy. This is mainly due to the fact that while DTW is 
simple to implement and scale-invariant, it works only for 
small number of gestures [47]. For the inertial and flex sensor 

combination, the raw data is commonly used as the input for 
the classification by neural networks directly [45, 46]. 

2) Feature-level Fusion 
 As can be seen from Table I, feature level fusion is by far 
the most common technique used across multiple applications 
of upper limb movement recognition. Feature level fusion uses 
features rather than raw data for fusion for the simplicity of 
computation [3]. Feature sets are extracted from segmented 
data from each sensor and are combined to make a feature 
vector with higher dimension, and is used as the input of the 
classifier. Feature selection methods such as windowing 
technique, kernel discriminant analysis [48], minimal 
redundancy maximal relevance heuristic [49], and correlation 
based feature selection [50, 51]are often used for this process in 
the field of activity recognition [3]. Through this process it is 
possible to effectively use the features to obtain higher 
accuracy, without the need to process all raw data samples 
individually. The main drawback however, comes from the 
increase of dimensionality of the feature vector entering the 
classifier, which makes the classification more complex.  

The success of feature level fusion depends upon the 
feature selection method, the feature concatenating method, 
and the classifiers. It is often difficult to predict the optimal 
method; thus, comparisons are commonly made between 
classifiers. For example Wu et al. [17] compared four common 
feature level fusion classifiers for American Sign language 
Recognition using IMU and EMG combination. They were 
Decision tree, Support Vector Machine (LibSVM), Nearest 
Neighbor and Naive Bayes. LibSVM showed the best 
performance in this case in terms of accuracy, precision, and 
recall. Also, compared to other classifiers, the testing time is 

 TABLE I. FUSION LEVEL AND CLASSIFICATION TECHNIQUE COMPARISON 

Sensor 
Combination 

Criteria of Comparison Classification Accuracy 
Reference Fusion 

Level 
Classification 

Technique Application (Number of Gestures) Wireless 
Protocol  Uni-modal  Multi-

modal 

EMG and IMU 

Feature Kernel Regularised 
Least Squares (KRLS) Hand gesture recognition (40) RF EMG: 76% 

IMU: 81% 82.59% [43] 

Feature LibSVM American sign language 
recognition (80) Bluetooth IMU: 92.29%  96.16% [17] 

Feature Hierarchical Decision 
Tree algorithm 

Chinese sign language 
recognition (72) - - 96.3% [44] 

Feature Linear Discriminant 
Analysis (LDA) Hand gesture recognition (8) - EMG: 94% 96% [22] 

Inertial and 
Camera 

Data Multi-Hidden Markov 
Model (Multi-HMM) Hand gesture recognition (10) Bluetooth Inertial: 81% 

Camera: 76% 91% [27] 

Data Dynamic Time 
Warping (DTW) Hand gesture recognition (10) - - 92.3% [23] 

Decision 
Collaborative 
Representation 
Classifier (CRC) 

Body action recognition (27) Bluetooth Inertial: 88.3% 
Camera: 85.1% 97.2% [25] 

EEG and EMG 
Feature Linear Discriminant 

Analysis (LDA) Hand gesture recognition (5) - EEG: 75.1% 
EMG: 77% 91.7% [6] 

Decision Gaussian classifier and 
Bayesian Fusion 

Upper limb movement 
recognition (2) - EEG: 73% 

EMG: 87% 92% [38] 

Inertial and 
Flex 

Data Artificial Neural 
Networks (ANN) 

American sign language 
recognition (25) - - 94% [45] 

Data 
Elmann Back 
Propagation Neural 
Networks (ENN) 

Thai sign language recognition 
(16) - - 94.44% [46] 

Feature Gaussian Mixture 
Model (GMM) 

Upper limb gesture recognition 
(6) - - 92.86% [31] 

The dash means that wireless protocol was not used or mentioned for data communication. 
The dash means that the comparison experiment was not conducted. 
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not affected by the number of different gestures, which is 
crucial for real-time applications. Nearest Neighbor may have 
lower accuracy, and the testing time increases for larger 
training sets, but have the advantage of not needing a trained 
model. Decision trees have been used for sign language 
recognition [44, 52] [53, 54], since they are particularly robust 
for handling large amounts of data in a short time and 
straightforward to interpret. However, the performance of 
classifiers has significant difference depending on the 
application and features, therefore as mentioned in [17] it is 
suggested to experiment with multiple classifiers to find the 
most adequate one. 

There are many commonly used features that are 
considered to be sufficient for classification. Most of the 
current studies rely on features that are easy to compute and 
provide satisfactory accuracy. However, a recent study was 
done to show the importance of optimizing the feature vector 
[17]. In this study, 268 different features from EMG and IMU 
data was ranked with a score from information gain criteria and 
concluded on a feature vector consisting of 40 features 
regarding the accuracy and computational constraints.   

Feature level fusion such as concatenating two differing 
sets of features is simple and straightforward but faces some 
limitations as mentioned in [25]. Increased dimensionality of 
the feature vector leads to increased computational overhead, 
and each feature extracted may have different dimensions. For 
example, a depth feature vector from depth cameras usually has 
much higher dimensionality than inertial sensor features. The 
numerical scale difference of the features also needs to be 
considered where normalization technique should be applied. 
In [55], problems and possible solutions for feature fusion for 
inertial and depth sensors has been studied.  

3) Decision-level Fusion 
Decision level fusion is the process of selecting one final 

output out of the many classifier outputs from different sensors. 
This has the lowest computational complexity since each 
sensor can be processed with different algorithms and 
classified separately, as such it is the selection and combination 
of already classified data. It therefore has the advantage of 
saving the communication bandwidth and improved decision 
accuracy [20]. A disadvantage however, is that the 
compensation effect of data error cannot be resolved. For 
example, the drift effect of inertial sensors would not be able to 
be mitigated via point of reference with other sensory data until 
the decision process, in which case relevant information may 
have already been lost.  There are several decision fusing 
techniques, including simple fusion, classical inference 
(summation, majority voting, board count, highest rank, 
logistic regression), voting and ensemble, boosting, Bayesian 
inference, and Dempster-Shafar’s method [3, 20]. 

Sensor combinations which utilize related data of the same 
phenomenon such as the EEG/EMG sensors combination [38], 
and the Inertial/Visual sensors combination [27, 56], have been 
seen to be particularly suited to decision level fusion. The 
reason for this is that the differences in features between 
modalities is often minimal, considering they are measuring 
highly related phenomenon, therefore feature level fusion may 
not be as effective in utilizing the advantages of each modality. 

The technique used by [27] for combining depth and inertial 
data with decision level fusion was sending the data from the 
depth sensor and the inertial sensor into multiple HMM 
classifiers, then combining the probability outputs from the 
multiple HMM classifiers to generate the final outcome. A 
similar technique was used in the study by Leeb et al. [37] 
which involved the control of a ‘hybrid’ brain computer 
interface (hBCI). In the study, EEG and EMG data were 
processed and classified simultaneously in parallel with 
Gaussian classifiers, after which the decision level fusion of 
information was performed. The study explored the application 
of two different decision level fusion techniques; simple and 
Bayesian, and compared them. The fusion module used in the 
study received probability values from the two Gaussian 
classifiers, which were related to the confidence associated 
with each outputted class.  It was found that Bayesian fusion 
had some advantages over simple fusion, such as being more 
robust to the effects of fatigue of the upper limb. 

V. Discussion 
As shown in this review, there are several advantages that 

the multi-modal fusion of sensors can offer, including the 
increase of spatial or temporal coverage, and the increase of 
classification accuracy. However, using sensor fusion can often 
increase computational load, and there are also a number of 
challenges involved with the synchronization of data. 

A. Synchronization of Data 
As can be seen from Table II, each sensor type exhibits a 

unique sampling frequency, which makes integrating these 
modalities together in one system a challenge, as it is crucial 
that the information is synchronous so that phenomenon can be 
correctly classified. Synchronization of EEG and EMG data is 
generally less of a problem as due to the similarity of the 
sensors, and that they can be sampled using the same sampling 
rate (1k - 2k Hz), and thus maintain synchronization more 
easily.  When this is not the case however, for other sensor 
combinations a suggested and commonly used solution is to up 
sample or down sample the data of one modality so that its 
frequency matches that of the other one.  

There are of course a number of limitations associated with 
this, for instance, EMG data commonly occurs with a 50-500 
Hz frequency, thus, according to Nyquist-Shannon Theorem, if 
the data is sampled below a minimum of 1000 Hz there may be 
temporal data loss experienced. For the EMG/IMU 
combination, Kutafina et al. [57] used a down sampling 
technique on EMG data, but applied the down sampling to the 
feature vectors after feature extraction had been carried out on 
the raw data in order to preserve temporal information. In [27], 
a study which combines inertial data with the depth and RBG 
data from a Microsoft Kinect, inertial sensor data is down 
sampled. Whenever the Kinect signal is sampled through the 
Kinect SDK software at the rate of 30 Hz, a signal sample from 
the inertial sensor is collected at the same time. This method is

TABLE II. TYPICAL SAMPLING FREQUENCIES OF SENSORS 

 
Sensor 

EMG IMU EEG Microsoft 
Kinect 

Leap 
Motion 

Sampling 
frequency (Hz) 

1k-2k 50-1k 1k-2k 30 115 
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 common for such systems [20] [27]. Conversely, [43] used 
the up sampling technique of linear interpolation on 
accelerometer data in order to achieve a common frequency of 
200Hz with EMG data. This was in contrast to what was 
reported by [57], who suggested that due to the nature of IMU 
sensors and the cumulative errors that are responsible for the 
drift effect, up sampling via interpolation can be an inaccurate 
and non-robust method. However, as the study [43] was for the 
control of an assistive exoskeleton, a high level of accuracy 
was needed, hence their decision to up sample. 

Synchronization is also particularly an issue with wireless 
sensors, as over Bluetooth (which was the most common 
wireless protocol utilized in literature) there is typically a 5-
20ms transmission delay, and if some modalities are wearable 
and wireless while others are external, synchronizing the data 
can be a tedious task. The study presented in [58] combines 
Microsoft Kinect and inertial sensors focused on this 
problematic and provided a method involving the 
synchronization of a PC to both inertial sensors and the 
Microsoft Kinect. The system obtained accurate results without 
having access to the video-depth cameras internal system 
clock. This method is known as time stamping, and has been 
utilized by a number of studies in the IMU/EMG combination 
as well [17, 52, 59]. 

B. Segmentation 
The detection of movement onset and termination is 

incredibly important for classifying the motions, and 
particularly in real time systems, the automation of this is 
crucial. In the case of uni-modal systems, such as for 
accelerometer systems, a data windowing technique is often 
utilized, however this can make a system slow and not 
applicable for real time application. EMG data however, has 
been identified as being particularly useful for lightweight 
movement onset detection since muscles tend to relax between 
different gestures [44]. The onset detection can be done in a 
number of ways, including thresholds, for example in the 
studies [17] and [60], which used average energy calculations 
across multiple windows and moving average algorithms 
respectively. There are also examples of energy operators 
being used such as the Teager-Kaiser energy operator [61].  

C. Data management 
Usually, BSNs can be connected through a wireless system 

and connected to Internet, so that clinicians can benefit from 
the data online independently from the patient location [62]. As 
BSNs bring large data volumes, “the need to manage and 
maintain these datasets is of utmost importance” [63]. In this 
context, an emerging perspective is to manage these data in the  
domain of big data computing. Indeed, "big data presents a 
dramatic opportunity for reducing health disparities" [64],in 
this evolving era of patient centricity[65]. 

On top of big data computing, development of wireless 
protocol itself is also in the need for fast and concise wireless 
data transmission. As seen in Table 1, most wireless system 
uses Bluetooth due to its acceptable performance and cost 
effectiveness [17, 25, 27]. Regardless of its advantages, 
development of BSNs still suffer from critical power 
consumption issues, which is expected to be solved by the 
introduction of Bluetooth Low Energy (BLE). Several studies 

have proven the effectiveness of BLE for BSNs, claiming its 
low power consumption and robustness for data collision in 
high data traffic load situations [66, 67]. 

VI. Conclusion 
 This review offers an up-to-date summary and survey of 

the current technologies and techniques used in the field of 
upper limb area networks, especially the sensor fusion for 
upper limb movement measurement and detection, focusing on 
the most common combinations of sensors: EMG and inertial 
sensors, inertial and visual sensors, EEG and EMG sensors, 
and IMU and flex sensors. In Table I, it is clearly shown there 
is an increase in accuracy through using sensor fusion for 
movement recognition compared to uni-modal systems, 
highlighting the advantage and success of sensor fusion. It is 
important to realize, however, that each sensor combination has 
its own strengths and weaknesses, which should be taken into 
consideration when the choice of sensors is made for any 
specific application. As important as sensor combination 
choice is, the choice of sensor fusion technique is just as 
crucial, thus in this review a comparison of the level of fusion 
and the classification technique was conducted to provide 
groundwork for this purpose. Despite efforts to conduct a 
thorough extended search, there may be elements that are not 
covered in this review, therefore there may be a need for 
further consideration and research in this field. 

Multi-sensor data fusion is a well-established research area, 
however, to achieve better performance through sensor fusion 
there still needs innovation not only on processing techniques, 
classification methods, and feature selection methods, but also 
by utilizing new sensors for different combinations.  For 
example, strain sensors [68, 69] can cost effectively measure 
the surface deformation of skin and provide lightweight 
wearable sensor alternatives. While these sensors can be used 
successfully alone, there is potential for sensor fusion to 
improve these systems further. 

Due to the increase in computational load that sensor fusion 
techniques are often associated with, for the continued 
development on real-time wireless BSNs both data 
management and wireless communication is a must [62]. In the 
aspect of data management, some studies suggested the 
application of cloud computing on BSNs for scalable storage 
and processing power. With the effectively processed data 
combined with a wireless system that can be synchronous 
across multiple nodes and be able to facilitate large amounts of 
data flow, as well as have low energy consumption would be 
ideal [70]. In this paper Bluetooth Low Energy was identified 
as solution commonly utilized, however as technology 
improves a more suitable medium may become evident.  
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